Численный анализ динамической модели полярона

И.В. Амирханов¹, Е.В. Земляная¹, В.Д. Лахно², Д.З. Музафаров¹, И.В. Пузынин¹, Т.П. Пузынина¹, З.А. Шарипов¹

¹e-mail: camir@jinr.ru, Лаборатория информационных технологий, ОИЯИ, Дубна; ²Институт математических проблем биологии РАН, Пущино

На протяжении более двух десятилетий в ЛВТА-ЛИТ ОИЯИ в сотрудничестве с ИМПБ РАН ведется исследование нелинейных самосогласованных задач, возникающих в различных приложениях теории конденсированных состояний. Особое место среди различных явлений автолокализации квазичастиц (экситонов или электронов) занимает автолокализованное состояние электронов в ионных кристаллах, называемое поляроном. Поляроны определяют многие процессы в ионных кристаллах [1], полупроводниках, полярных жидкостях и биологических системах [2-4]. Понятие биполяронных состояний играет важную роль при объяснении высокотемпературной сверхпроводимости. Поляронные состояния используются в современной наноэлектронике при описании переходов в квантовых точках. Поляронными эффектами объясняются полосы поглощения центров окраски в ионных кристаллах. В полярных средах сольватированные состояния электронов представляют собой поляронные состояния и определяют химические реакции, выполняя роль сильнейшего восстановителя. В полимерах поляроны являются основными носителями тока. Их проводящие свойства используются при создании сверхлегких проводников и аккумуляторов. В биологии поляроны или солитоны объясняют возможность переноса энергии на большое расстояние. Их изучение дает основу для создания таких качественно новых устройств нанобиоэлектроники, как нанобиочипы и электронные нанобиосенсоры.

Динамическая модель полярона описывается системой связанных квантово-классических динамических уравнений [5, 6], стационарные решения которой исследовались многими авторами (см., в частности, обзор [7] и цитируемую литературу). Наша цель состояла в изучении временной эволюции различных начальных состояний полярона в отсутствии и при наличии трения. Ниже математическая постановка задачи, представлена численная схема для решения системы нелинейных дифференциальных уравнений, описывающей эволюцию полярона в однородной среде, представлены результаты численного моделирования, полученные в [8].

Рис. 1: Собственные функции системы (3)

Математическая постановка задачи

Система нелинейных уравнений для описания эволюции полярона предложена в [5]. Для сферически симметричного неподвижного полярона с учетом трения [6] эта система записывается в следующем виде:

$$\begin{cases} \left[i2\bar{m}\frac{\partial}{\partial t} + \frac{\partial^2}{\partial x^2} + 2\bar{m}\frac{\varphi}{x}\right]\psi = 0, \\ \frac{\partial^2\varphi}{\partial x^2} = \Theta, \\ \left[\frac{\partial^2}{\partial t^2} + \gamma\frac{\partial}{\partial t} + \omega^2\right]\Theta = -\frac{\omega^2}{\tilde{\varepsilon}}\frac{|\psi|^2}{x}, \end{cases}$$
(1)

где ψ – волновая функция, φ – потенциал, Θ , \bar{m} , $\gamma, \omega, \tilde{\varepsilon}$ – безразмерные параметры модели. Система (1) дополняется следующими начальными и граничными условиями:

1

$$\begin{split} \psi(x,t)|_{t=0} &= \Psi_k(\cos(\lambda_k \pi/4) + i\sin(\lambda_k \pi/4)),\\ \Theta(x,t)|_{t=0} &= -\frac{1}{\tilde{\varepsilon}} \frac{\Psi_k^2}{x}, \frac{\partial}{\partial t} \Theta(x,t) \bigg|_{t=0} = 0,\\ \varphi(0) &= 0, \quad \varphi'(\infty) = 0. \end{split}$$

$$(2)$$

1.1

Здесь λ_k и Ψ_k – собственные значения и собственные функции соответствующей стационарной за-

Рис. 2: Эволюция полярона из состояния (6) и соответствующая энергия электрона W(t) при $\gamma = 4$ (a, б) и $\gamma = 0$ (в, г)

Рис. 3: Эволюция полярона из состояния (7) и соответствующая энергия электрона W(t) при $\gamma = 4$ (a, б) и $\gamma = 0$ (в, г)

дачи:

$$\begin{cases} \left[\frac{d^2}{dx^2} - 2\bar{m}\lambda + 2\bar{m}\frac{\Phi(x)}{x}\right]\Psi(x) = 0, \\ \frac{d^2}{dx^2}\Phi(x) = -\frac{1}{\tilde{\varepsilon}}\frac{\Psi^2(x)}{x}, \quad 0 \le x \le \infty, \end{cases}$$
(3)

с граничными условиями и с условием нормировки:

$$\Psi(0) = 0, \quad \Phi(0) = 0,$$

$$\Psi(\infty) = 0, \quad \Phi'(\infty) = 0,$$

$$\int_{0}^{\infty} \Psi^{2}(x) dx = 1.$$
(4)

На основе непрерывного аналога метода Ньютона [7] находим решения $\{\Psi_k, \lambda_k\}$ с числом узлов $k = 0, 1, 2, \ldots$. На Рис. 1 показаны первые три собственные функции системы (3), (4). Соответствующие собственные значения равны $\lambda_0 = -0, 16277, \lambda_1 = -0, 0308, \lambda_2 = -0, 0125$ $(\bar{m} = 1, \tilde{\varepsilon} = 1).$

Рис. 4: Эволюция полярона из состояния (8) и соответствующая энергия электрона W(t) при $\gamma = 4$ (a, б) и $\gamma = 0$ (в, г)

Вычислительная схема

Введем равномерную сетку с шагами h_x , h_t соответвтсвенно по переменным x и t:

$$\{x_m = mh_x (m = 0, 1, \dots, l), \quad t_n = nh_t (n = 0, 1, \dots)\}$$

Для решения системы (1) с начальными и граничными условиями (2) будем использовать неявную конечно-разностную схему порядка аппроксимации $O(h_t + h_x^2)$ [9]:

$$\begin{cases} \frac{\psi_m^{n+1} - \psi_m^n}{h_t} = i \left\{ \sigma \left[\Lambda^{n+1} + \frac{\varphi_m^{n+1}}{mh_x} \psi_m^{n+1} \right] + \right\} \\ + (1 - \sigma) \left[\Lambda^n + \frac{\varphi_m^n}{mh_x} \psi_m^n \right] \right\} \\ \frac{\varphi_{m+1}^{n+1} - 2\varphi_m^{n+1} + \varphi_{m-1}^{n+1}}{h_x^2} = \Theta_m^{n+1} \\ \frac{\Theta_m^{n+1} - 2\Theta_m^n + \Theta_m^{n-1}}{h_x^2} + \gamma \frac{\Theta_m^{n+1} - \Theta_m^n}{h_t} + \\ + \omega^2 \Theta_m^{n+1} = -\frac{\omega^2}{\tilde{\varepsilon}} \frac{|\psi_m^n|^2}{mh_x}, \end{cases}$$
(5)
$$\Lambda^{n+1} = \frac{\psi_{m+1}^{n+1} - 2\psi_m^{n+1} + \psi_{m-1}^{n+1}}{2\bar{m}h_x^2} \\ \Lambda^n = \frac{\psi_{m+1}^n - 2\psi_m^n + \psi_{m-1}^n}{2\bar{m}h_x^2} \\ \psi_m^0 = \Psi_k (\cos(\lambda_k \pi/4) + i \sin(\lambda_k \pi/4)); \\ \Theta_m^{-1} = -\frac{1}{\tilde{\varepsilon}} \frac{|\psi_m^0|^2}{mh_x}; \quad \Theta_m^0 = \Theta_m^{-1}; \end{cases}$$

 $\varphi_0^n = 0; \ \varphi_l^n = \varphi_{l-1}^n; m = 1, 2, \dots, l; \ n = 0, 1, 2, \dots$

где $\sigma = 0, 5, \Psi_k, \lambda_k$ соответственно собственные функции и собственные значения стационарной задачи (3), (4). Для решения задачи (1), (2) по схеме (5) на каждом слое с номером *n* использовался следующий алгоритм:

- 1. Решается третье уравнение при известном ψ^{n} относительно Θ^{n+1} ;
- 2. Решается второе уравнение для найденного Θ^{n+1} , определяется φ^{n+1} ;
- 3. Решается первое уравнение и вычисляется ψ^{n+1} на следующем временном слое;
- 4. Переход к п.1 для следующего значения n.

Тестирование вычислительной схемы (5) проводилось с помощью модельных расчетов для уравнения Шредингера с кулоновским потенциалом, которое совпадает с первым уравнением системы (1) при $\varphi = 1$. В этом случае для уравнения Шредингера известны аналитические решения. По результатам сравнительного анализа численных и аналитических решений уравнения Шредингера были выбраны параметры дискретной сетки $h_x = 0,01$ и $h_t = 0,001$, для которых отклонение численного решения от аналитического не превышает $4 \cdot 10^{-4}$ на промежутке времени $0 \le t < 10^5$, соответствующем характерному периоду колебаний в системе "электрон деформированное поле".

Для визуализации численных результатов вычислялась энергия W(t) по формуле:

$$W(t) = \frac{1}{2\bar{m}} \int \left| \frac{\partial \psi(x,t)}{\partial x} \right|^2 dx - \int \frac{\varphi(x,t) \left| \psi(x,t) \right|^2}{x} dx.$$

Поскольку расчеты велись в безразмерных единицах, энергия W(t) здесь также является безразмерной величиной.

Результаты численного моделированя

Численные эксперименты показали, что если в качестве начального условия (2) взято стационарное состояние полярона, полученное путем численного решения задачи (3), (4), форма полярона со временем не меняется. В [8] исследовалась эволюция начальных поляронных состояний, заданных в форме комбинаций стационарных состояний полярона:

$$\Psi(x,t)|_{t=0} =$$

$$= N \left[\Psi_0 \exp\left(i\pi\frac{\lambda_0}{4}\right) + \Psi_1 \exp\left(i\pi\frac{\lambda_1}{4}\right) \right], \qquad (6)$$

$$\Psi(x,t)|_{t=0} =$$

$$= N \left[\Psi_0 \exp\left(i\pi\frac{\lambda_0}{4}\right) + \Psi_2 \exp\left(i\pi\frac{\lambda_2}{4}\right) \right],$$
(7)

$$\Psi(x,t)|_{t=0} = N\left[\Psi_1 \exp\left(i\pi\frac{\lambda_1}{4}\right) + \Psi_2 \exp\left(i\pi\frac{\lambda_2}{4}\right)\right].$$
(8)

Здесь N – нормировочная константа, $\Psi_{0,1,2}$ – волновые функции основного состояния, первого и второго возбужденных состояний.

=

На Рис.2, 3, 4 представлены результаты численного решения задачи (1), (2) с начальными условиями (6), (7), (8) соответственно, при значениях параметров $\bar{m} = 1$, $\omega = 1$, $\tilde{\varepsilon} = 1$, N = 0, 5, $\gamma = 0$ и 4.

На основании проведенного численного моделирования можно заключить, что начальные распределения заряда, заданные суперпозициями (6), (7), (8), при наличии в системе затухания ($\gamma \neq 0$), с течением времени эволюционируют в основное состояние. При отсутствии в системе затухания в промежутке времени $0 \leq t < 10^5$ эволюция в основное состояние не наблюдается.

Время эволюции полярона в основное состояние при $\gamma \neq 0$ зависит от типа комбинации начального состояния. Так, для начального условия в форме (6) время эволюции в основное состояние составляет $t \approx 3000$, для (7) и (8) – соответственно $t \approx 6000$ и $t \approx 9000$.

Список литературы

- Пекар С.И. Исследования по электронной теории кристаллов. М.: Гостехиздат, 1951.
- [2] Давыдов А.С. Солитоны в молекулярных системах. Киев: Наукова Думка, 1988.
- [3] Lakhno V.D. (ed.). Polarons and Applications. Wiley, Chichester, 1994.
- [4] Компьютеры и суперкомпьютеры в биологии. Под. ред. Лахно В.Д. и Устинина М.Н. Москва-Ижевск: Институт компьютерных исследований, 2002, 528с.
- [5] Давыдов А.С., Энольский В.З. Трехмерный солитон в ионном кристалле. //ЖЭТФ, т. 81, вып. 3(9), 1981, с.1088-1098.
- [6] Lakhno V.D. Dynamical polaron theory of the hydrated electron. // Chemical Physics Letters, 2007, Vol. 437, c.198-202.
- [7] Пузынин И.В. и др. Обобщенный непрерывный аналог метода Ньютона для численного исследования некоторых нелинейных квантово - полевых моделей. //ЭЧАЯ, т. 30, вып. 1, 1999, стр. 210-262.
- [8] Амирханов И.В. и др. Численное исследование динамики поляронных состояний. // Вестник ТвГУ, серия Прикладная математика, 2009, Вып. 2[13], с.5-14.
- [9] Самарский А.А. Теория разностных схем. М.: Наука, 1989, стр. 296-299.